
(SBCL)Lisp w/Hadoop 
Streaming

&
distributed(CLOS)objects/code 

w/CLIPS&PVM

Mike.Bobak@gmail.com



Streaming is very flexible 
Hadoop Streaming 
Hadoop provides an API to MapReduce that allows you to write your map and reduce functions in languages other than Java. Hadoop 
Streaming uses Unix standard streams as the interface between Hadoop and your program, so you can use any language that can read standard 
input and write to standard output to write your MapReduce program. 
Streaming is naturally suited for text processing (although, as of version 0.21.0, it can handle binary streams, too), and when used in text mode, 
it has a line-oriented view of data. Map input data is passed over standard input to your map function, which pro- cesses it line by line and 
writes lines to standard output. A map output key-value pair is written as a single tab-delimited line. Input to the reduce function is in the same 
format—a tab-separated key-value pair—passed over standard input. The reduce func- tion reads lines from standard input, which the 
framework guarantees are sorted by key, and writes its results to standard output. 
Let’s illustrate this by rewriting our MapReduce program for finding maximum tem- peratures by year in Streaming. 



examples of setup files & processing

hadoop fs -rmr streaming/results
hadoop jar /usr/lib/hadoop/contrib/streaming/hadoop-streaming-
0.20.2+320.jar \
    -verbose \
    -input streaming/urls \
    -output streaming/results \
        -mapper  "sbcl --core km.core --load mapper.cl" \
        -reducer "sbcl --core km.core --load reducer.cl" \ 
    -file mapper.cl \
    -file reducer.cl



Can also interact w/AWS ..

Can get to S3 storage w/: http://www.xach.com/lisp/zs3/
get-string/put-string of http://common-lisp.net/project/cl-json/ strs

or

Simple Command-Line Access to Amazon EC2 and Amazon 
S3, via:
http://common-lisp.net/project/trivial-shell/ to http://aws.amazon.
com/developertools/739 AWS shell tool.
 
For fast front-end use could put the json to http://www.cliki.net/cl-mongo &can make use of: http://cliki.net/cl-redis too.

 
Had considered being able to take avro (self-describing) inputs.
 It has a json header that describes the binary encoded stream.

can even mix w/hadoop-streaming, but be sure that it is faster than a multi-step process, which could be organized&run by oozie

Though for some tasks you might just be able to use cascalog, in clojure which allows for tighter Hadoop/Java integration,
&for more real-time streaming work a clojure hadoop like system called storm which uses MQ, though possibly rewritable in Lisp.



Possible app: hadoop(like) graph-store

BBN's SHARD triple-store uses flat HDFS files w/great bench-
marks.  I think this could be done w/Lisp, and have considered 
doing some of the reasoning w/KnowledgeMachine, which was 
used in the HALO, then CALO project which turned into Siri.

SHARD http://www.lotico.com/slides/20110208/Rohloff_Meetup_02_08_2011.pdf
KM http://www.cs.utexas.edu/~mfkb/km/



SHARD: Big(Semantic)Data

 



CLIPS w/PVM to run distrib-simulations
in CntxMngr

rules help w/the cmplx event processing, moving the parts of the system fwd; ~agt-based



A live,data/goal driven distrib-simulation

latter used in: 

prototype comm for CM/SimMngr at: https://github.
com/MBcode/CLIPSmsc/tree/master/clp-pvm
cl-pvm also available, so I would write similar methods, so they 
could interoperate.



MsgPassing:PVM (a more simple MPI) 
We are seeing HPC msg-passing libs like MPI being brought into 
new Hadoop like packages; to allow for orders of magnitude 
improvements (via tigher-loops) for applications like Machine-Learning
 
Having distributed objects in Lisp is very easy, as you have the 
ability to easily reflect during runtime; slot-names &associated 
msg-packing routines for all their slot-value types makes it 
easy.  The only trick was to start the obj-packed msg, w/a str, that 
could be eval'd to create an instance on the other side.  This 
includes msg-unpacking methods for each of the slot/val 
pairs.  This can be a nice way to quickly share huge chunks of 
data between several different dynamic languages.  
 
Even tighter coupling like in rcl&cl-octave can benefit from msg-passing;  
 could maybe re-do w/pvm &(a link to the server version of) R&Octove's REPLs, or just unpack&eval.

I would also like to share lots of data w/xlispstat's vista, Lush,&Clojure



Clojure (cascalog&storm)     (Java v CL) interop

Look great, but I'd rather build up in Lisp, and move it toward 
what Clojure can do, vs. not building on the rich set of Lisp 
Libs.

Could probably use cl-zmq as a starting place for a storm-like.

I wish java interop was easier, Rich H tried it before writing 
Clojure.  
I think external-program, streaming,&msg-passing can get 
around some of the/se tighter/(more radical) ways of getting 
interop.

Remember your freedom to choose which (set of) language(s) to use should be increased (both in server&)distributed 
programming, given this looser (stream/msg-passing/..) coupling.



a few refs:
http://www.sbcl.org/  or http://ccl.clozure.com/  & http://www.quicklisp.
org/                                                                                                                                                      
 

http://www.cs.utexas.edu/~mfkb/km/   KnRepr&Reasoning/Qry
http://www.dist-systems.bbn.com/people/krohloff/shard.shtml
                                    also see the Lisp: (pay): http://franz.com/agraph/ (&free:) https://github.com/kraison/vivace-graph-v2.git
 
Data: http://code.google.com/p/cl-protobuf/ or http://avro.apache.org/ in lisp w/cl-json &a decent cl binary pkg          I'd like semantics for
Store: http://www.hdfgroup.org/HDF5/ git://gitorious.org/dh-misc/hdf5.git https://github.com/filonenko-mikhail/cl-scidb.git  <- petabytes, to
                                                                                                                                                                           help guide it's use                                                                                                                                                                                                                    .

http://www.csm.ornl.gov/pvm/PVMvsMPI.ps    MsgPassing
                              &miss: http://en.wikipedia.org/wiki/*Lisp 's  pvars: auto-spread vects among processors
some Lisp(likes):

http://en.wikipedia.org/wiki/CLIPS   (has CLOS) RuleBased-Shell
                                           In CL there is: http://lisa.sf.net/                              gui: http://protege.stanford.edu/
                                                                                        http://code.google.com/p/malecoli/
http://en.wikipedia.org/wiki/XLispStat   or in CL: https://github.com/blindglobe/common-lisp-stat
  http://www.visualstats.org/                
 http://lush.sf.net                                                         http://common-lisp.net/project/rcl/ to R which has
 or http://cliki.net/Mathematics                                                R+pvm: http://cran.r-project.org/web/packages/rpvm/index.html
                                                                       http://common-lisp.net/project/cl-octave/
      &for py pkgs git://github.com/franzinc/cl-python.git          to http://octave.sf.net w/ http://www.netlib.org/pvm3/ pkg
 

https://github.com/nathanmarz cascalog storm  in Clojure
Cascalog is a replacement for tools like Pig,Hive,&Cascading. Storm is a distributed, reliable,&fault-tolerant stream processing system.



ps 
Now I would bring more KnShareingEffort like annotation around large data-sets and code(sim/analytics/etc), so they could more 
easily interoperate in a goal-based way.  So extending old work, but doing it w/(hopefully)a better set of tools.


