
was:

Large Linked Data
Sketch of a potential linked-data system

that could deal w/large data volumes
w/example influences/components

bit.ly/TP8gfz

rough title: 

KM for use in SmartThings projects



Large Triple/Graph Processing
dealing with communicating distributed 

stores and streaming data feeds
more of a Ipython/parallel /ROS approach

making a BBN-SHARD like 
system using UT-Austin's 

Knowledge-Machine in Lisp
 

mike.bobak.googlepages.com
bobak7.wix.com/bobak



Possible app: mapreduce based graph-store
by bringing together ideas behind BBN’s SHARD mapreduce on hdfs flat files of triples, 
&/or using aspect of Ipython’s parallel-libs, Storm, &ROS
with the reasoning done by UT-Austin’s Knowledge-Machine 
and SciDB like array storage/ops for heavy numerics

SHARD 

                              Graph processing on HDFS
  fast distributed triple-store

SciDB
            open-src data-mgt&analytics 

     array-ops scaling to petabytes   

KM: The Knowledge-
Machine

  frames to OWL, use of access-limited-logic

KM is a powerful, frame-based language with clear first-
order logic semantics. It contains sophisticated machinery 
for reasoning, including selection by description, 
unification, classification, and reasoning about actions 
using a situations mechanism.

Used in Halo/Calo precursor to Siri

I used for medical free-text concept-labeling 
experiments, along w/MMTx/MetaMap POS/..



SHARD:  (Scalable, High-Performance, Robust and Distributed)

 



graph/triple-store processing via mapreduce

BBN's SHARD triple-store uses flat HDFS files w/great bench-
marks.  I think this could be done w/Lisp, and have considered 
doing some of the reasoning w/KnowledgeMachine, which was 
used in the HALO, then CALO project which turned into Siri.
 SHARD http://www.lotico.com/slides/20110208/Rohloff_Meetup_02_08_2011.pdf

 -but w/KnRep&Reasoning done w/:

KM http://www.cs.utexas.edu/~mfkb/km/   example class-defn:



SHARD: Using Hadoop to Build a Scalable, Distributed Triple Store

 



Shard sparql query    w/KM equivalent
https://dist-systems.bbn.com/people/krohloff/shard_overview.shtml

                 .                   SRI has OWL interop
       So might also w/sparql

     

SELECT ?person  (Car has (superclasses (Vehicle)))
 WHERE {  ;when vehicle predicate inherits from owns can say:    
 ?person :owns ?car .            (the  owns-of of (a Car) with ((madeIn *Detroit)))
 ?car :a :car .      ;or just ask:

 ?car :madeIn :Detroit .}           (the  vehicle-of of (a Car) with ((madeIn *Detroit)))



Streaming is very flexible 
Allowing polyglot programming (can mix in elts in any language needed) 
 

Hadoop Streaming 
Hadoop provides an API to MapReduce that allows you to write your map and reduce functions in languages other than Java. 
Hadoop Streaming uses Unix standard streams as the interface between Hadoop and your program, so you can use any language 
that can read standard input and write to standard output to write your MapReduce program. 

Streaming is naturally suited for text processing (although, as of version 0.21.0, it can handle binary streams, too), and when 
used in text mode, it has a line-oriented view of data. Map input data is passed over standard input to your map function, which 
processes it line by line and writes lines to standard output. A map output key-value pair is written as a single tab-delimited line. 
Input to the reduce function is in the same format—a tab-separated key-value pair—passed over standard input. The reduce 
function reads lines from standard input, which the framework guarantees are sorted by key, and writes its results to standard 
output. 



example streaming setup files 

hadoop fs -rmr streaming/results
hadoop jar /usr/lib/hadoop/contrib/streaming/hadoop-streaming-0.20.2.jar \
    -verbose \
    -input streaming/input-dir \
    -output streaming/results \
        -mapper  "sbcl --core km.core --load mapper.cl" \
        -reducer "sbcl --core km.core --load reducer.cl" \ 
    -file mapper.cl \
    -file reducer.cl \
    -file km.core



Other types of Streaming

Instead of batch Hadoop, there is Storm like 
live streaming, &/or Ipython’s parallel libs, both 
of which use MQ.
There are also streaming sparql engines like C-
SPARQL and Instans, and just streaming 
triples into your reasoner, which can deal 
w/updated data.
Keeping it distributed and closer to pub/sub 
msgs of interest; Like through use of ROS

http://storm-project.net
http://ipython.org/ipython-doc/stable/parallel/parallel_intro.html
http://ipython.org/ipython-doc/dev/development/parallel_connections.html
http://www.cs.hut.fi/~mjrinne/sw/instans/INSTANS-Simulations-March2012.pdf
http://www.ros.org


Clojure (cascalog&storm) (JVM v CL) interop

A Storm like system could help deal with some of the velocity problem.

Can get KM in ABCL, might mix w/clojure vs a rewrite.
  
Look great, but I'd rather build up in Lisp, and move it toward what Clojure can do, 
vs. not building on the rich set of Lisp Libs.

Could probably use cl-zmq as a starting place for a storm-like.

I wish java interop was easier, Rich Hickey tried it before writing Clojure.  
I think external-program, streaming,&msg-passing can get around some of the/se 
tighter/(more radical) ways of getting interop.

Remember your freedom to choose which (set of) language(s) to use should be increased (both in server&)
distributed programming, given this looser (stream/msg-passing/..) coupling.



Can also interact w/AWS ..

Can get to S3 storage w/: www.xach.com/lisp/zs3/ get-string/put-string 
&share w/other apps, via: common-lisp.net/project/cl-json/ strings
or

Simple Command-Line Access to Amazon EC2 and Amazon S3, via:
common-lisp.net/project/trivial-shell/ to aws.amazon.com/developertools/739 AWS shell tool.
 
NoSQL fast front-end use by puting the json to www.cliki.net/cl-mongo &can make use of: cliki.net/cl-redis too.

 
Had considered being able to take avro (self-describing) inputs.
 It has a json header that describes the binary encoded stream.

can even mix w/hadoop-streaming, but be sure that it is faster than a multi-step process, which could be organized&run by 
oozie

Though for some tasks you might just be able to use cascalog, in clojure which allows for tighter Hadoop/Java integration,

&for more real-time streaming work a clojure hadoop like system called storm which uses MQ, 
though possibly rewritable in Lisp.

New: will look at: https://github.com/lookis/service-monitor



Example use: bit.ly/hurricanehackers-gdoc tasks 
using logd.tw.rpi.edu linked-open-govt/etc data

#HurricaneHackers
Table of Contents
Project Brainstorming:

Sandy ImpactsMore project ideas
Projects in Progress

SandyTimeline
SandyStreamsMap

Resources:
Maps

SystemWindWaterEvacuation
Official Data

ForecastsModelsImagesHistorical Hurricane DataMiscellaneous
Crowdsourced Data

Ushahidi/Crowdmap
Audio/Video

StreamsAmateur Radio
Social Media
News / PSAs

Governments / NGOsImportant Articles / PostsTwitter
Code / APIs / Repositories

Social MediaTimelines
#hurricanehackers CoordinationLulz, Memes, HumorContributors

http://bit.ly/hurricanehackers-gdoc
http://logd.tw.rpi.edu/
https://docs.google.com/document/d/1SGcfQz13ce4FfB-QHKF3WLwxHoCRGBouuvZn-3aoX0k/edit#heading=h.8715zj4hm9iy
https://docs.google.com/document/d/1SGcfQz13ce4FfB-QHKF3WLwxHoCRGBouuvZn-3aoX0k/edit#heading=h.8715zj4hm9iy
https://docs.google.com/document/d/1SGcfQz13ce4FfB-QHKF3WLwxHoCRGBouuvZn-3aoX0k/edit#heading=h.czqkofegu3qm
https://docs.google.com/document/d/1SGcfQz13ce4FfB-QHKF3WLwxHoCRGBouuvZn-3aoX0k/edit#heading=h.czqkofegu3qm
https://docs.google.com/document/d/1SGcfQz13ce4FfB-QHKF3WLwxHoCRGBouuvZn-3aoX0k/edit#heading=h.3en2g9fkpqjc
https://docs.google.com/document/d/1SGcfQz13ce4FfB-QHKF3WLwxHoCRGBouuvZn-3aoX0k/edit#heading=h.d3uoeg6urzk7
https://docs.google.com/document/d/1SGcfQz13ce4FfB-QHKF3WLwxHoCRGBouuvZn-3aoX0k/edit#heading=h.3en2g9fkpqjc
https://docs.google.com/document/d/1SGcfQz13ce4FfB-QHKF3WLwxHoCRGBouuvZn-3aoX0k/edit#heading=h.mj8zs1nebhih
https://docs.google.com/document/d/1SGcfQz13ce4FfB-QHKF3WLwxHoCRGBouuvZn-3aoX0k/edit#heading=h.mj8zs1nebhih
https://docs.google.com/document/d/1SGcfQz13ce4FfB-QHKF3WLwxHoCRGBouuvZn-3aoX0k/edit#heading=h.ijx6ti3multl
https://docs.google.com/document/d/1SGcfQz13ce4FfB-QHKF3WLwxHoCRGBouuvZn-3aoX0k/edit#heading=h.ijx6ti3multl
https://docs.google.com/document/d/1SGcfQz13ce4FfB-QHKF3WLwxHoCRGBouuvZn-3aoX0k/edit#heading=h.c8cogqx7xkvo
https://docs.google.com/document/d/1SGcfQz13ce4FfB-QHKF3WLwxHoCRGBouuvZn-3aoX0k/edit#heading=h.c8cogqx7xkvo
https://docs.google.com/document/d/1SGcfQz13ce4FfB-QHKF3WLwxHoCRGBouuvZn-3aoX0k/edit#heading=h.5lozjzl5b23v
https://docs.google.com/document/d/1SGcfQz13ce4FfB-QHKF3WLwxHoCRGBouuvZn-3aoX0k/edit#heading=h.5lozjzl5b23v
https://docs.google.com/document/d/1SGcfQz13ce4FfB-QHKF3WLwxHoCRGBouuvZn-3aoX0k/edit#heading=h.7kjzg27sl1b0
https://docs.google.com/document/d/1SGcfQz13ce4FfB-QHKF3WLwxHoCRGBouuvZn-3aoX0k/edit#heading=h.7kjzg27sl1b0
https://docs.google.com/document/d/1SGcfQz13ce4FfB-QHKF3WLwxHoCRGBouuvZn-3aoX0k/edit#heading=h.yc6aq5raqni3
https://docs.google.com/document/d/1SGcfQz13ce4FfB-QHKF3WLwxHoCRGBouuvZn-3aoX0k/edit#heading=h.oq9g0sf7pseg
https://docs.google.com/document/d/1SGcfQz13ce4FfB-QHKF3WLwxHoCRGBouuvZn-3aoX0k/edit#heading=h.fbyay7wr7vbw
https://docs.google.com/document/d/1SGcfQz13ce4FfB-QHKF3WLwxHoCRGBouuvZn-3aoX0k/edit#heading=h.wlkrgc13h63m
https://docs.google.com/document/d/1SGcfQz13ce4FfB-QHKF3WLwxHoCRGBouuvZn-3aoX0k/edit#heading=h.yc6aq5raqni3
https://docs.google.com/document/d/1SGcfQz13ce4FfB-QHKF3WLwxHoCRGBouuvZn-3aoX0k/edit#heading=h.fjcpsq9521mn
https://docs.google.com/document/d/1SGcfQz13ce4FfB-QHKF3WLwxHoCRGBouuvZn-3aoX0k/edit#heading=h.fjcpsq9521mn
https://docs.google.com/document/d/1SGcfQz13ce4FfB-QHKF3WLwxHoCRGBouuvZn-3aoX0k/edit#heading=h.ucnomb1l0ds9
https://docs.google.com/document/d/1SGcfQz13ce4FfB-QHKF3WLwxHoCRGBouuvZn-3aoX0k/edit#heading=h.k53nb5ka4zqi
https://docs.google.com/document/d/1SGcfQz13ce4FfB-QHKF3WLwxHoCRGBouuvZn-3aoX0k/edit#heading=h.h7bzhwwe124c
https://docs.google.com/document/d/1SGcfQz13ce4FfB-QHKF3WLwxHoCRGBouuvZn-3aoX0k/edit#heading=h.s45z52ojgzfm
https://docs.google.com/document/d/1SGcfQz13ce4FfB-QHKF3WLwxHoCRGBouuvZn-3aoX0k/edit#heading=h.5iitd6ujvpew
https://docs.google.com/document/d/1SGcfQz13ce4FfB-QHKF3WLwxHoCRGBouuvZn-3aoX0k/edit#heading=h.ucnomb1l0ds9
https://docs.google.com/document/d/1SGcfQz13ce4FfB-QHKF3WLwxHoCRGBouuvZn-3aoX0k/edit#heading=h.o0n117uy2nso
https://docs.google.com/document/d/1SGcfQz13ce4FfB-QHKF3WLwxHoCRGBouuvZn-3aoX0k/edit#heading=h.o0n117uy2nso
https://docs.google.com/document/d/1SGcfQz13ce4FfB-QHKF3WLwxHoCRGBouuvZn-3aoX0k/edit#heading=h.bwzhu0bfrvjg
https://docs.google.com/document/d/1SGcfQz13ce4FfB-QHKF3WLwxHoCRGBouuvZn-3aoX0k/edit#heading=h.bwzhu0bfrvjg
https://docs.google.com/document/d/1SGcfQz13ce4FfB-QHKF3WLwxHoCRGBouuvZn-3aoX0k/edit#heading=h.y33yxom3gx2i
https://docs.google.com/document/d/1SGcfQz13ce4FfB-QHKF3WLwxHoCRGBouuvZn-3aoX0k/edit#heading=h.y33yxom3gx2i
https://docs.google.com/document/d/1SGcfQz13ce4FfB-QHKF3WLwxHoCRGBouuvZn-3aoX0k/edit#heading=h.hnbjr5c16wm6
https://docs.google.com/document/d/1SGcfQz13ce4FfB-QHKF3WLwxHoCRGBouuvZn-3aoX0k/edit#heading=h.krtm0lncey4e
https://docs.google.com/document/d/1SGcfQz13ce4FfB-QHKF3WLwxHoCRGBouuvZn-3aoX0k/edit#heading=h.hnbjr5c16wm6
https://docs.google.com/document/d/1SGcfQz13ce4FfB-QHKF3WLwxHoCRGBouuvZn-3aoX0k/edit#heading=h.xe16b4rf6han
https://docs.google.com/document/d/1SGcfQz13ce4FfB-QHKF3WLwxHoCRGBouuvZn-3aoX0k/edit#heading=h.xe16b4rf6han
https://docs.google.com/document/d/1SGcfQz13ce4FfB-QHKF3WLwxHoCRGBouuvZn-3aoX0k/edit#heading=h.plw3wt607qmu
https://docs.google.com/document/d/1SGcfQz13ce4FfB-QHKF3WLwxHoCRGBouuvZn-3aoX0k/edit#heading=h.plw3wt607qmu
https://docs.google.com/document/d/1SGcfQz13ce4FfB-QHKF3WLwxHoCRGBouuvZn-3aoX0k/edit#heading=h.95c6wu17807b
https://docs.google.com/document/d/1SGcfQz13ce4FfB-QHKF3WLwxHoCRGBouuvZn-3aoX0k/edit#heading=h.8kc797f9qs2l
https://docs.google.com/document/d/1SGcfQz13ce4FfB-QHKF3WLwxHoCRGBouuvZn-3aoX0k/edit#heading=h.qxptg7v2vgzw
https://docs.google.com/document/d/1SGcfQz13ce4FfB-QHKF3WLwxHoCRGBouuvZn-3aoX0k/edit#heading=h.95c6wu17807b
https://docs.google.com/document/d/1SGcfQz13ce4FfB-QHKF3WLwxHoCRGBouuvZn-3aoX0k/edit#heading=h.5i8drtavbae1
https://docs.google.com/document/d/1SGcfQz13ce4FfB-QHKF3WLwxHoCRGBouuvZn-3aoX0k/edit#heading=h.5i8drtavbae1
https://docs.google.com/document/d/1SGcfQz13ce4FfB-QHKF3WLwxHoCRGBouuvZn-3aoX0k/edit#heading=h.w6thegsav2or
https://docs.google.com/document/d/1SGcfQz13ce4FfB-QHKF3WLwxHoCRGBouuvZn-3aoX0k/edit#heading=h.4gv51b7y7avk
https://docs.google.com/document/d/1SGcfQz13ce4FfB-QHKF3WLwxHoCRGBouuvZn-3aoX0k/edit#heading=h.w6thegsav2or
https://docs.google.com/document/d/1SGcfQz13ce4FfB-QHKF3WLwxHoCRGBouuvZn-3aoX0k/edit#heading=h.iwgx2byjrhg7
https://docs.google.com/document/d/1SGcfQz13ce4FfB-QHKF3WLwxHoCRGBouuvZn-3aoX0k/edit#heading=h.p6cwkrazkzqf
https://docs.google.com/document/d/1SGcfQz13ce4FfB-QHKF3WLwxHoCRGBouuvZn-3aoX0k/edit#heading=h.cpyqll4q5gru
https://docs.google.com/document/d/1SGcfQz13ce4FfB-QHKF3WLwxHoCRGBouuvZn-3aoX0k/edit#heading=h.iwgx2byjrhg7
https://docs.google.com/document/d/1SGcfQz13ce4FfB-QHKF3WLwxHoCRGBouuvZn-3aoX0k/edit#heading=h.cpyqll4q5gru


linked data cloud
 



Reasons for triples describing large arrays vs. a triple per #: 
few extra orders of magnitude by directing data to right tools

Plenty of large numeric needs:
sensor-nets, large-science (weather/satellite-imagery..)
machine-learning, query over huge multi-dim arrays

HPC techniques&tools for store/moving&processing 
these volumes very quickly.

HDF5 w/parallel (msg-passing) IO &tools that use it.



Links: www.sbcl.org  or ccl.clozure.com & www.quicklisp.org          

www.cs.utexas.edu/~mfkb/km   KnRepr&Reasoning/Qry
www.dist-systems.bbn.com/people/krohloff/shard.shtml
also see the Lisp: (pay): http://franz.com/agraph/ (&free:) https://github.com/kraison/vivace-graph-v2.git

Data: code.google.com/p/cl-protobuf/ or avro.apache.org/ in lisp w/cl-json &a decent cl binary pkg          I'd like semantics for

Store: www.hdfgroup.org/HDF5/ git://gitorious.org/dh-misc/hdf5.git github.com/filonenko-mikhail/cl-scidb.git  <- petabytes,        

-   parallel/dist/msg-passing:  lparallel.com cl-pvm/lpvm www.cliki.net/cl-mpi   www.csm.ornl.gov/pvm/PVMvsMPI.ps 

  &miss: http://en.wikipedia.org/wiki/*Lisp 's  pvars: auto-spread vects among processors

some Lisp(likes): en.wikipedia.org/wiki/CLIPS  (has CLOS) RuleBased-Shell
   In CL there is: http://lisa.sf.net/    ..                          gui: protege.stanford.edu/
Streaming SPARQL: github.com/aaltodsg/instans   
 ML: code.google.com/p/malecoli/ github.com/mathematical-systems/clml.git http://quickdocs.org/mgl/

en.wikipedia.org/wiki/XLispStat   or in CL:github.com/blindglobe/common-lisp-stat

 www.visualstats.org    lush.sf.net           common-lisp.net/project/rcl to R which has

 or cliki.net/Mathematics                                         R+pvm: cran.r-project.org/web/packages/rpvm/index.html

 common-lisp.net/project/cl-octave &for py pkgs github.com/franzinc/cl-python.git   to octave.sf.net 

ipython is allowing mixing R/etc, & parallel execution, sage mixes python &maxima in Lisp
     new: https://github.com/Paradigm4/SciDBR  &v7: https://github.com/openlink/virtuoso-opensource *more

github.com/nathanmarz cascalog storm  in Clojure
Cascalog is a replacement for tools like Pig,Hive,&Cascading. 

Storm is a distributed, reliable,&fault-tolerant stream processing system.

http://www.cliki.net/distributed
http://www.cliki.net/distributed
https://github.com/g000001/Starlisp-simulator
http://www.stat.auckland.ac.nz/~ihaka/?Papers_and_Talks


MsgPassing:PVM (a more simple MPI) 

We are seeing HPC msg-passing libs like MPI being 
brought into new Hadoop like packages; to allow for orders 
of magnitude improvements (via tigher-loops) for applications like 
Machine-Learning
 

Having distributed-objects w/huge arrays in Lisp is very easy, as 
you have the ability to easily reflect during runtime; slot-names & associated msg-
packing routines for all their slot-value types make it easy.  The only trick was to start 
the obj-packed msg, w/a str, that could be eval'd to create an instance on the other 
side.  Then assoc msg-unpacking methods for each of the slot/val pair comes into play.  This 
can be a nice way to quickly share huge chunks of data between several different 
dynamic languages.  

Even tighter coupling like in rcl&cl-octave can benefit from msg-passing;  
 could maybe re-do w/pvm &(a link to the server version of) R&Octove's REPLs, or just 
unpack&eval.

I would also like to share lots of data w/xlispstat's vista, Lush,&Clojure



A live:data/goal-driven distrib-simulation

  used in: 

reasoning/comm 
for Context/SimMngr at: https://github.com/MBcode/CLIPSmsc/tree/master/clp-pvm
cl-pvm also available, so I would write similar methods, so they could interoperate.



Semantic-Web/.. to aid Machine-Learning
Adding explicit model/structure, can aid in more causal/explanation/understanding/trust/usability/..

Now I would bring more KnShareingEffort like annotation around large data-sets and code(sim/analytics/etc), so 
they could more easily interoperate in a goal-based way.  So extending old work, but doing it w/(hopefully)a better 
set of tools.

DIS/HLA allows simulation to be mixed with real-world activity

pps. encouraging: http://ontolog.cim3.net/cgi-bin/wiki.pl?ConferenceCall_2012_02_09 also sbcl on 
heroku&openshift
Also want to look at: http://www.isle.org/process/ & http://biobike.csbc.vcu.edu/ again.

https://github.com/jsmpereira/heroku-buildpack-cl
https://github.com/atgreen/lisp-openshift
https://github.com/jsmpereira/heroku-buildpack-cl


*more   I'll add a few more new links here:

 Many can be found on my: https://twitter.com/MBstream &some others:

http://thinkaurelius.com/2013/05/13/educating-the-planet-with-pearson/ 
http://www.openlinksw.com/dataspace/doc/oerling/weblog/Orri%20Erling's%20Blog/1728
http://www.franz.com/ps/services/conferences_seminars/semantic_technologies_v27.lhtml
from: http://www.franz.com/ps/services/conferences_seminars/ using: http://www.franz.com/agraph/allegrograph/ 

http://semanticweb.com/big-data-goes-to-the-ballpark-the-next-generation-of-moneyball-at-yarcdata_b37840

http://portal.utpa.edu/utpa_main/daa_home/coecs_home/provbase_home

Will try bits of this for the http://lispinsummerprojects.org/ at: https://github.com/MBcode/kme

EDU: http://linkedup-project.eu/

NLP: https://github.com/MBcode/km3 http://www.cliki.net/natural%20language%20processing

LinkedData: benchmark: http://swat.cse.lehigh.edu/projects/lubm/ 

another cloud triplestore: http://sqrrl.com/media/Rya_CloudI20121.pdf 

https://github.com/MBcode/kme
http://linkedup-project.eu/
https://github.com/MBcode/km3
http://www.cliki.net/natural%20language%20processing
http://swat.cse.lehigh.edu/projects/lubm/
http://semanticommunity.info/Modus_Operandi#Story
http://sqrrl.com/media/Rya_CloudI20121.pdf
http://semanticommunity.info/Modus_Operandi#Story

